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Abstract

We present an implementation of the automated analysis proposed by Williams in her 2012 gen-
eralization of the Coppersmith-Winograd algorithm. We show w < 2.372772 using the 4th power
of the CW construction, an improvement on previous 4th power bounds, in addition to confirming

independent work by Williams demonstrating w < 2.372711 using the 8th power.
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Chapter 1

Introduction

Since Volker Strassen’s discovery in 1969 that n X n matrix multiplication could be accomplished
in better than O(n?) time [Str69], theoretical research in matrix multiplication algorithms has seen
a long staircase of gradual improvement in w, the exponent of matriz multiplication. Progress
had appeared to stall after Coppersmith and Winograd reached w < 2.376 [CW87|, their second
breakthrough in the field; no lower exponent was found until three years ago, when Stothers analyzed
the fourth power of CW’s tensor to obtain w < 2.3737 [Sto10], followed shortly thereafter by Virginia
Vassilevska Williams’ analysis of the eighth power achieving the current bound of w < 2.3727 [Wil12].

Previous analyses of Coppersmith-Winograd’s algorithm and its higher tensor powers, including
the analysis accomplished by Stothers, required separate, arduous derivations for each of a number
of values that increased quadratically with tensor power. The major achievement of Williams’ paper
was the construction of an algorithm to generalize the analysis of CW-like tensors, in a way that is
both mechanical and computationally tractable for large powers. A tantalizing challenge presented
by Williams in her paper is the prospect of performing future analyses of a similar nature entirely by
computer. In this report I present my work towards realizing that prospect, under the advisement
of Virginia Vassilevska Williams and Ryan Williams.

In chapter [2, we review the nonlinear program derived in Williams’ paper. Chapter [3] lists the
parameters that can be varied when searching for better solutions. Chapter [4] describes details of
the implementation of the search, and the results obtained using this implementation are presented
in chapter [5] Finally, chapter [6] provides instructions for obtaining and running the search program

and a guide to the layout of the source code.



Chapter 2
Williams’ program

Following Schonhage and Coppersmith-Winograd, we instead minimize a bound on w/3, conven-
tionally labeled 7.

We choose P, the tensor power of the construction we are analyzing, and construct a constraint
program in |P?/3| 4+ P + 1 variables a; sk (the “small variables”), where I, J, and K are integers,
0<I<J<K,and I +J+ K =2P. (The STOC ’12 paper includes a more general form of the
program with two sets of variables, a and a; in our analysis here we elect to set a;;x = aryK.)

The program is then: minimize 7, subject to
o Nonnegative: ayjx > 0 for all ayyk.

o Permutations identity:

Z perm(l, J, K)arjx =1,
1,0,K

where perm(7, J, K) is the number of unique permutations of (I, J, K).
e Rank constraint (see section [2.1)).
e Free variable constraints (see section [2.2)).

Descriptions of the constraints follow.

2.1 Rank constraint

To compute a matrix product is to evaluate a particular trilinear form, a sum ZZ ik LigkTiYj 2,
where ¢ is the tensor of the trilinear form. Coppersmith and Winograd |[CW87] defined the value

V(7) of a trilinear form to indicate its similarity to a sum of matrix product tensors.
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The rank constraint is a generalization of Schonhage’s asymptotic sum inequality [Sch81]. It
relates the values Vi (7) of a set of trilinear forms that compose the tensor being analyzed to the
border rank r of the tensor.

Williams defines additional variables A, (the “large variables”) to be the sum of all a;;, where
¢ e {i,j,k}, times 2 if the other two indices are unique. (Equivalently, A, = Z(i’j’k) it ee{i gk} Qijks
where here the sum is over all triples ¢, j, k that sum to 2P, not just those in sorted order, and

@ijk = Gsort(i,j,k)-) Lhe rank constraint in its most general form is

perm(I,J,K)ar sk
p o g Visx

B Hz AZAZ

In analyzing the P power of [CW87|, we substitute Coppersmith and Winograd’s border rank,
r = q+ 2, and take logs to get

Plog(g+2) < Y perm(l, J, K)log(Vis)arsx — Y Arlog(Ay).
I,J,K Y

The nonlinearity in this constraint is embedded in the second term, as each A, is a sum involving

small variables a;;y.

2.2 Free variable constraints

When analyzing powers above the third, it is necessary to include a number of additional constraints.
These constraints take the form
'y K'

arjK H ap gPrIE =1, (2.1)
IJ K’

They are constructed by solving the linear system defining A, for some subset of a; ;i (referred to
in the implementation as the “included” set) in terms of A, and the remaining aryx (the “excluded”

set, S). The included set may be chosen arbitrarily, although its size is fixed by the rank of the

matrix dj?fx' (For the second and third powers, it is possible to solve for all ar;x in terms of
Ap—i.e., the matrix has full rank—and as a result, no constraints are needed here.)
With the coefficients of the solved linear system in hand, we create one additional constraint
(2.1) for each variable a;jx in S. The coefficients of the solved linear system give the powers
I/J/K/ _ dCLI/J/K/

Pr.
LTK darjk ’

where each ajsj/ ks is “included” (not in S).
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Some of the derivatives pf:]JI/{K ' may be negative. To allow for setting certain ayjx to zero when

searching for solutions, and to avoid numerical instability in solving the program, Williams rewrote
the constraints (2.1]) in the form

'y’ Kk’ 1I'J K’
arJjK I | ap g PIK = | I ap g PIIE
I,J K’ r,J.K’'
gl ! ’ !
Prix" >0 Pl <0

This is the form we use in our implementation.

2.3 Computing values

In order to complete the constraint program, it is necessary to know a lower bound on the value V7 i
of each trilinear form that makes up the construction. Williams gives two algorithms for computing

the values. The first algorithm can only be used for even P, while the second can be applied to any

tensor power.

2.3.1 Even powers algorithm

Bounds on Vjjx are computed recursively in terms of known bounds on the values for lower powers.

The structure of the resulting expression is a product of sums:

1/3 1/3 1/3
Vigk =2 13 P G - L (2.2)

LP result

Combined products

The expressions &, ¢, (¢, and La are computed using a set of temporary variables o;;;, indexed
by triples similar to the a;;; variables of the constraint program. (Note that a different set of o

is constructed for each value Vjjx.) The triples (¢, 7, k) in this step are subject to the constraints
that

e i+ j+k=2P (as in the case of the value triples);

e (< I/2 and if i = I/2, then j < J/2—that is, (4,7, k) is not lexicographically greater than its
“complement” (I —4,J — j, K — k); and

e j < J, k < K—no index of the triple may be greater than the corresponding index of the
value’s triple.

(Unlike the ayyx above, these triples do not have to be in sorted order.)
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From these, define X, = Z”k c(i, I, 0)a 5, where

2 ifi=l=1—¢
c(i,I,0)=<¢ 1 ifi=~ori=1I-{¢ (but not both);

0 otherwise.

Similarly, Yo = 32, ;. c(j, J. O)aji, and Zg = 37, . c(k, K, ).

These definitions form a linear system. As before, we will solve the linear system for some of

4,3,k

the ;5 in terms of Xy, Yy, Zy, and an excluded set of a;; (A). This yields a matrix of coefficients
daijir  daije  dagjk
dXy, ' dY, ' dZy dai’j’k’

Once we have found these coefficients, we can compute &, ¥y, and (;, the “combined products”

dOL,;jk

, and for each a;jpr in A.

in the value lower bound. These are computed recursively from values of lower powers: define
Wijke = VijiVi—i,g—j k—k- (The code calls W, “bases.” When evaluating Vi_; j_; x—k, we can use
the fact that VIJK = Vrsort(I,J,K)~) Then

dojk 1 if I is odd
=Tw,. = 1<1/2] =
S le_[k " /2] Lz { 1/2 if I is even
dajjk 1 if J is odd
= VI/V2 3 Yy < |J/2 N =
ve le_[k " L7/2] L) { 1/2 if J is even
o= [T Wik & 1< K/ Cucpay = = [T Wisn® ¥
4 11 ijk 5 K /2] 2. > i
1,7, 2,7,

At this point, as in the linear system for the final program above, if the linear system was of full
rank (A = ), we are finished; the bound on the value is given by (2.2)) (with La = 1).

If not, we must compute La. Its value is
La = H T
ik €A
where d;;;, have a form similar to that of &, etc.:
do‘i/j’k/

Oijk = H Wisjigr ik

T Y ’
v,g"k

Here, LA still contains some « variables, unlike the previous expressions. Our goal is to maximize
the bound on Vijgi, so we should maximize Ln. We have some freedom to choose the values of
the variables i, with some constraints. These constraints, concisely, are that every o;jx, whether
excluded (€ A) or included, must be nonnegative. The included «;j;, are defined in terms of Xy,

Yy, Z; and the excluded a1, by the solved linear system above. To make them depend only on the
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excluded variables, we give values to Xy, Yy, and Z;:

& »e Ce
= Y, = Ly =
DR ¢ Yoo Ve ¢ Do Cer

Assuming we’ve computed the lower power values, Xy, Yy, and Z, are then constants, making all

X

the constraints linear. Furthermore, ;5 are also constants. Therefore, maximizing

log(La) = Z log(6;5x)viji

k€A

subject to these constraints is a linear program, which can be solved with any available LP solver.
(We employ GLPK for this purpose—see section )

2.3.2 General powers algorithm

The algorithm for finding V;jx for arbitrary P differs from the even powers algorithm only in the
indices of the « variables, the computation of the bases W, and some multiplicative factors. The
most salient difference in the construction of the programs that 4, j, k in «; j x, and £ in &, etc., are
no longer integers but rather P-tuples of integers in {0, 1,2}.

For 1 < p <P, define i[p] to be the pth element of the tuple i. The restrictions on the indices %,

j, and k for a; jj, are:

o > ilpl=1; >, lpl = J; 32, klp] = K
o for each p, i[p| + j[p] + k[p] = 2; and

e for each p < P, (i[p],jlp], klp]) < (i[p + 1],7[p + 1], k[p + 1]), where < is a lexicographic

comparison of the tuples.

For example, one valid o for Vigs (P = 3) is a(oo1),(020),(201)-

The equations for the large variables Xy, Yy, Z, use an extended definition of the perm function,
permyp (7, §, k), which is the number of distinct triples of tuples (i’,j’, k") one can obtain from all
possible permutations 7 of (1,2,...,P) by permuting 4, j, and k each by 7: i[p] = i[r(p)],7'[p] =
Jlm(p)], k' [p] = k[r(p)]. We use the following identity to avoid enumerating all possible 7:

permp (i, j, k) = perm(i) - perm(j[p] : i[p] = 0) - perm(j[p] : i[p] = 1)
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The large variables are

1

PO v, i k)
¢ perm(ﬁ)z‘%;cc(la ) permyp (i, j, k)i jk
1
Yi=——+=) c(j,0) permp(i,j, k) ;i
perm(ﬁ);f (4, 0) p( )i,
1
Zy=—= Y c(k,0) permp (i, j, k) j i
perm(ﬂ)%}c (k,€) p( Jati,j

with (i, £) = 1if 7 is a permutation of ¢ and 0 otherwise. This linear system may be overconstrained,
so before solving it, we remove two of the equations to make sure its rank is equal to the number of
equations. (In our implementation, we choose the lexicographically greatest X, and lexicographically

greatest Yp; Williams’ paper removes the lexicographically least X and Y. The choice is arbitrary.)
daijr  daijk
dX, de

algorithm, each base W;;y, is a product of P values: Wy, = Hp:l Vi[p],j[p])k[p]. Note that although

da”k

Solving this system as above gives the derivatives , and . In the general powers
this appears to be a simple generalization of the product of two values that occurs in the even powers
algorithm, here i[p], j[p|, k[p] are restricted to {0, 1,2}, so the general powers algorithm is not fully
recursive, instead giving values for arbitrary powers only in terms of the values Voo and Vj1;.

From the derivatives and bases, we construct

gpermp (i, k) dajjp

_ perm H Wz_]k Tperm(d) A%,

0,5,k
g permp (i,4,k) dajjik
wg = perm(f) H I/Vij}C perm(¢) Yy
1,5,k
g permp (i,4,k) dagjk
Co= perm(f) H Wijk porm(l) aZ,
1,5,k
and if A is nonempty,
da.s 1y
i’ ik i’k
dijr = H VVi'j//c'pemP(z IR T

oAl 7
i,3".k

In determining La, the setting of the large variables is also modified with perm(¢) coefficients:

&e Yy Ce
Xp=— >t Y= — -t Zp=— >t
perm(£) >, & £ perm() X, v £ perm(0) X, Co

We then use an LP solver to maximize log(La) and compute Vijx as in (2.2)), identically to the

even powers algorithm.
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2.3.3 “Zero” values

Our implementation includes another lemma from Williams’ paper (“Claim 7”) which applies to
values Vi from any power. These have a simpler lower bound that is a polynomial in ¢, raised to

the 7 power:

T

P
Vorx 2 > (b J=b —b>qb

b<J 2 0 2
b=J (mod 2)



Chapter 3

Parameters

While the nonlinear program itself represents a search over a family of algorithms, defined by the
ayji variables that define the search space of the nonlinear constraint solver, there are five config-
urable parameters that can be changed to influence the construction of the program itself. A feasible
solution to the program generated for any setting of these parameters gives an upper bound on w,
S0 it is necessary to experiment with the setting of these parameters to ensure that one has explored

the entire space of CW-like constructions.

3.1 Power

As described in chapter 2] Williams’ algorithm is applied by starting with an analysis of a base case
of a particular matrix multiplication construction and recursively generalizing the analysis to higher
tensor powers P. Varying this parameter has already been a productive source of improvements
in w: successive generalizations to higher powers of two of the Coppersmith-Winograd [CW87|
construction by Stothers [Stol0] and Williams [Will2] have each resulted in a better bound on w.
We have applied our automated analysis to powers 2, 3, 4, 5, 7, and 8 of the CW construction,

although we were unable to find a feasible solution to the P = 7 program for any w < 2.7.

3.2 (q

The CW family of constructions, starting with [Str86], are assembled from a sum of some number
q of tensor products; Coppersmith and Winograd found w < 2.376 for ¢ = 6, but Williams achieved
w < 2.3727 using an analysis with ¢ = 5. We allow ¢ to vary in our analysis between 4 and 7. Of

these, ¢ = 5 appears to consistently give the best results across most powers (see chapter [5.1]).
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3.3 Zero variables

It is possible to reduce the dimensionality of the search space for the nonlinear solver by requiring
that some number of the program parameters be exactly zero. This necessarily prevents the solver
from finding some optimal solutions, but if the variables to be set to zero are chosen carefully, this
restriction does not make solving the program much more difficult. If a feasible solution exists,
reducing the number of variables can increase the probability of finding it and makes the solver
converge faster (see section .

3.4 Free variables

Constructing the program involves several steps of solving underconstrained linear systems by choos-
ing a subset of the variables to treat as constants. There are two points in Williams’ algorithm where
this strategy is employed: constructing the linear programming piece of the values computation
(section , and constructing the derivatives constraint of the final program (section . Which
variables are treated as constants can affect the bounds obtained on the various tensor values Vi k.

Our implementation includes configurations of free variables used by Williams in [Will2] and
the option to specify the free variables used for each value and for the final program; although our
search automation does not currently look for improvements gained in this way, this could be a
subject of future work. Since higher values loosen the rank constraint (due to the fact that Vi x is
nondecreasing in 7), to minimize w one would need to search for the LP free variable setting that
maximizes each value. An exhaustive search would run in exponential time and may be infeasible
already for some of the 8th power values, but if a pattern could be uncovered in the optimal free

variable choices, this exhaustive search may be avoidable.

3.5 Substitution

Although the nonlinear program includes both equalities and inequalities, the equalities have simple
forms that allow them to be eliminated by substitution in closed form. We implemented a search op-
tion that allows such substitution; however, we found that NLopt, the nonlinear solver we employed
in searching for feasible solutions to the program, was unable to solve the programs constructed this
way in a reasonable amount of time. One likely cause of this is that the closed-form substitutions
introduce divisions in the constraints, which lead to discontinuities and precision problems in the

solver.
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Implementation

Because the “constants” d;;;, can contain ratios of lower-power values, which depend nonlinearly on
T, constructing symbolic solutions for the values of higher powers, and therefore constructing the
complete nonlinear program such that 7 can be minimized, is not tractable. Instead, our search
proceeds as a series of attempts to find a feasible solution for specific values of 7 (and ¢). With 7
and ¢ fixed, the values computed are numeric constants that do not have to be recomputed for every

evaluation in the nonlinear solver.

4.1 Parallelization

Since each attempt is independent and CPU-bound, it makes sense to run searches in parallel, up
to one search per available core. Our search implementation uses the Python multiprocessing
library to take advantage of multiple cores, employing a task queue abstraction to schedule searches

optimally. The structure of the search parallelization is (Python pseudocode):

def search():

create inter-process queues input_queue, output_queue

fill input_queue with num_cores random parameter settings

start num_cores worker processes running worker

while jobs completed < goal:
block until output_queue is not empty
extract a result from output_queue and record the result
add another random parameter setting to input_queue

kill worker processes

11
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def worker (input_queue, output_queue):
while True:
get a parameter setting from the input queue
attempt to solve the program with the parameters
place the result (which includes success/failure)

in output_queue

4.2 Improving performance

Solving the nonlinear program dominates the running time of the search. T'wo small optimizations
made dramatic differences in the efficiency of the solver.

The first optimization was to use the SymPy lambdify function to preprocess the symbolic
expressions manipulated by the procedures that constructed the nonlinear program into Python
functions that compute the expressions directly. The original SymPy expressions were runtime data
structures that required interpreting; lambdify transforms these into Python bytecode that runs
just as fast as a custom function written for each expression.

The second optimization was to replace the equality in Williams’ rank constraint with an in-
equality. Williams’ STOC ’12 paper had

VIJK r perm(I,J,K)ar sk
P Ik ()

Hz AﬁAe

However, suppose we have a setting of ay i such that

P < Ik VIJK(T)perm(I’J’K)a”K
, J,

B Hz AfAe

Since each Vj ;i is a nondecreasing, continuous function of 7 and all ay;x are positive, there exists
7/ < 7 for which the strict equality holds, so our 7 still gives an upper bound on w/3. It is therefore
acceptable to solve the program using the inequality, which is convenient because satisfying an
inequality typically requires far fewer iterations than approximating an equality to a high degree of
precision.

The Python program is still significantly slower than the C++ code written by Williams to solve
the 8th power program; much of this slowness is likely due to the overhead of calls into and out
of the NLopt Python wrappers. Possible future work in improving performance would involve the

generation of C or C++ code, which would eliminate this overhead.
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Results

The best exponent bound we obtained solely with our implementation was
w < 2.372771003742,

with P =4, ¢ = 5. We were also able to use parts of our implementation interactively to confirm a

solution found by Williams with her Maple and C++ code, which gives
w < 2.3727104061

for P =8, g = 5. The settings for the variables a;jx that produced these bounds are included in

Table [5.2] on page [1§

5.1 Trends

Figure [5.1] plots the best matrix multiplication exponents obtained as a function of P and ¢. Powers
4 and 8 gave the best results of the data we collected; the results of the odd-powers attempts were
disappointing, giving exponents far higher than the even-power searches. (The fifth power is left out
of Figure because including it obscures differences between the other powers; Figure [5.1] shows
the fifth power in comparison. We were unable to find a feasible solution for the seventh power.)
The success of the even powers algorithm suggests that the 16th power could be a fruitful next step
in the search.

For all powers except the fifth, ¢ = 5 produced the best exponents. The best second- and third-
power exponents for ¢ = 5 do not differ significantly from ¢ = 6, but for the fourth and eighth
powers, the difference is notable.

The number of zero variables does impact the exponents found slightly, although it primarily

13
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0.00056 5 13 16
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Figure 5.3: Best exponents for the 8th power, varying the number of zero variables

helps, achieving better exponents with higher numbers of variables set to zero. This is likely due
to the decrease in program complexity, requiring less searching in the global ISRES algorithm.
Figure shows the best exponents found for each number of variables set to zero. All four

exponents shown in this figure were obtained with g = 5.

5.2 Performance

Figure shows the number of calls to the constraint functions required to achieve convergence (or
determine that the program is not feasible) for the lower powers. Blue dots in the figure are successes,
while red are failures; the red line is the kIN? cap. While failed attempts are highly unpredictable
in the amount of time they take to admit failure, successes occur reliably below a certain number of
NLopt calls for each power. We take advantage of this by automatically aborting the optimization
upon seeing that it has taken an unreasonable number of calls. The heuristic we use is to stop after
kN? calls, where N is the number of variables in the program (after removing the zero variables),
and k is a constant. We found that k£ = 20000 yields useful but conservative bounds.

Limiting the number of variables of the program decreases the time required for convergence
dramatically. Figure[5.2]shows three different configurations of zero variables for the 8th power; the
difference between using 6 zero variables and 16 is a factor-of-3 decrease in the number of iterations

until convergence for successes.
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Figure 5.4: Performance of the lower powers, as a function of w
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Williams’ solution: P = 8,

w < 2.3727104061

Our result: P =4,
w < 2.372771003742

a0,0,8
ao,1,7
a0,2,6
ao,3,5
ag,4,4
ai.1,6
a1,2,5
1,34
a2 4
a2.3,3

5

0.790923667914
3.959562956941811 x 10~8
6.510583719407185 x 10~°
0.0006964997378042281
0.012014754526837784
0.0001025196963378948
0.0006309742840397419
0.0021449017957688166
0.05540636001102574
0.08675778797387862
0.1051867695535445

q

’
0,0,16
ao,1,15
a0,2,14
a0,3,13
ao,4,12
ao,5,11
0,6,10
a0,7,9
ao,8,8
ai,i,14
41,213
ai,3,12
ay,4,11
a1,5,10
a1,6,9
ai1,7.8
az.212
a2.3.11
a2.4,10
az;5.9
az.6,8
ag 7.7
a3,3,10
a3,4,9
asz,5.8
as,e,7
a4.4.8
aq.5.7
a4.6,6
as.5.6

5
0.7909034687
0
0
0
0

0

5.607656585969684 x 10~5
0.0003442516415535713
1.0000000000697815 x 10~
1.000000000151792 x 1011
0

0

0

1.0000000000650404 x 10~
0.00041278743729968476
0.0006669991694253401
0.0014957209858593493

0

1.0000000000434667 x 10~
7.948735480255828 x 10712
0.0021066945258983614
0.006349235640076338
0.009151018807902839
9.999999987632591 x 10712
0.0033285911678671305
0.012854594323804942
0.024900092793920667
0.016144154713523113
0.04007153148051885
0.053855557825297065
0.06900945039321159

Table 5.1: Variable settings for confirmed bounds
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Chapter 6

Source code

Our Python source is available at http://stanford.edu/~wmonroe4/matrixmult/, downloadable

as a zipped archive or through a git repository.

6.1 Dependencies

A Python interpreter (http://python.org/)) is needed to run the search program. Python 2.7 is
recommended to ensure that all the necessary libraries are supported. Our implementation uses
three third-party libraries, all of which are free and open-source.

SymPy (http://sympy.org/) is an algebra library for Python that is used to automate sym-
bolic calculations. It depends on NumPy (http://numpy.org/) for array types and numerical
algorithms.

PuLP (http://code.google.com/p/pulp-or/) is a linear programming modeler that is used
to represent the LP step of the values computation and submit it to an LP solver. The LP solver
we use is GLPK (http://www.gnu.org/software/glpk/).

NLOpt (http://ab-initio.mit.edu/nlopt) [Joh] is the library we use to solve the final non-
linear program. We employ primarily the ISRES |[RYO05] global search algorithm in our implementa-
tion; the interactive exploration feature also provides a hook for the COBYLA [Pow94] algorithm,
for finding local solutions.

Instructions for obtaining and installing these libraries are included on the site listed at the top

of the page.

6.2 Getting started

The code is broadly divided into the final program construction, the values computations, utility

classes and subroutines, and unit tests.
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The creation of the final program is accomplished with get_final program in analysis.py.
Values are computed for the even powers algorithm and the general powers algorithm with the
functions named value in even.py and general.py, respectively.

Included in the code are an extensive set of unit tests comparing the output of various pieces of
the code with all expressions published in Williams’ STOC ’12 paper and included in personal cor-
respondence. These are placed in analysis_test.py (for the final program), even_test.py (for the
even powers value computation), and general test.py (for the general powers value computation).

To start the parallel search strategy in its default configuration (looking for solutions near the

best found so far, for powers 2, 3, 4, and 8,4 < ¢ < 7), run
matrixmult/src$ python search.py

The output is summarized in the console and logged in detail to exponents.txt.

The Python modules can also be used to interactively search for better exponents and verify
pieces of the algorithm. The module shortcuts is intended to make interactive exploration less
tedious; figure [6.2] gives a list of the useful functions and classes provided in this module and a
handful of other relevant definitions. As an example, the following lines verify that the solution

MAPLE_P8, found by Williams using Maple, satisfies the rank constraint:

>>> from shortcuts import *

>>> gfp(Search(power=8, g=5, tau=MAPLE_P8[tau],
free_vars=STOC12_P8_FREE,
lp_free_vars=STOC12_P8_LP_FREE,
zero_vars=STOC12_P8_ZERD)) .subs (MAPLE_P8) .positive

set ([4.74077080125921e-10])

i.e.: get the final program for P = 8, ¢ = 5 using the STOC ’12 free variables and zero variables,
plug in the Maple solution, and print the status of all inequality constraints (a set of numbers that

should be positive). The output is 4 x 107% > 0, so the rank constraint is satisfied.
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Functions
Full name Shortcut

analysis.get_final _program(search) gfp
Construct the final program from the parameters given by
the Search object search. Return it as a Program object.

solutions.all output () all output
Return a list of all Solution objects stored in exponents.txt.
solutions.short_vars (power) short_vars

Return a dict mapping long variable symbols a_i_j_k
to short variable symbols a, b, ...
solutions.long vars(power) long vars
Return a dict mapping short variable symbols to long
variable symbols.
shortcuts.a(i, j, k) a
Return a SymPy Symbol suitable for use as an a variable
in the final program or an « in value computations.

common.value_triples (power) vts

Return a list of all value triples (I, J, K) for the given power.
solvers.solve_isres(program, ...)

Global solver: look for a Solution to program.
solvers.solve_cobyla(program, starting point, ...) solve_cobyla

Local solver: look for a Solution to program starting near
starting point.

even.value(triple, q, tau, ...)

general.value(triple, q, tau, ...)
Compute the Vijx from q and tau. Lower-power values can be
computed symbolically by passing the Symbols q and tau.

Constants
Full name Shortcut
symbols.q q
symbols.tau tau
The SymPy Symbols for g and 7.
solutions.STOC12 P2, STOC12_P4, STOC12_P8 STOC12_P2,
solutions.MAPLE_ P4, MAPLE_P8 MAPLE_P4, MAPLE_P8

Solutions by Williams for several different powers, in the form
of dicts mapping a(i, j, k) symbols and tau to numbers.

solutions.STOC12_P4_FREE STOC12_P4 FREE
solutions.STOC12_P4 _LP_FREE STOC12_P4_LP_FREE
solutions.STOC12_P8_FREE STOC12_P8_FREE
solutions.STOC12_P8_LP_FREE STOC12_P8_LP_FREE

Free variable settings for Williams’ STOC ’12 results (the same
settings are used for the MAPLE solutions).

solutions.STOC12_P8_ZERO STOC12_P8_ZERO
Zero variable settings for Williams’ STOC ’12 power 8 result.

Table 6.1: Useful definitions for interactive searching
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