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Abstract

We present an implementation of the automated analysis proposed by Williams in her 2012 gen-

eralization of the Coppersmith-Winograd algorithm. We show ω < 2.372772 using the 4th power

of the CW construction, an improvement on previous 4th power bounds, in addition to confirming

independent work by Williams demonstrating ω < 2.372711 using the 8th power.
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Chapter 1

Introduction

Since Volker Strassen’s discovery in 1969 that n × n matrix multiplication could be accomplished

in better than O(n3) time [Str69], theoretical research in matrix multiplication algorithms has seen

a long staircase of gradual improvement in ω, the exponent of matrix multiplication. Progress

had appeared to stall after Coppersmith and Winograd reached ω < 2.376 [CW87], their second

breakthrough in the field; no lower exponent was found until three years ago, when Stothers analyzed

the fourth power of CW’s tensor to obtain ω < 2.3737 [Sto10], followed shortly thereafter by Virginia

Vassilevska Williams’ analysis of the eighth power achieving the current bound of ω < 2.3727 [Wil12].

Previous analyses of Coppersmith-Winograd’s algorithm and its higher tensor powers, including

the analysis accomplished by Stothers, required separate, arduous derivations for each of a number

of values that increased quadratically with tensor power. The major achievement of Williams’ paper

was the construction of an algorithm to generalize the analysis of CW-like tensors, in a way that is

both mechanical and computationally tractable for large powers. A tantalizing challenge presented

by Williams in her paper is the prospect of performing future analyses of a similar nature entirely by

computer. In this report I present my work towards realizing that prospect, under the advisement

of Virginia Vassilevska Williams and Ryan Williams.

In chapter 2, we review the nonlinear program derived in Williams’ paper. Chapter 3 lists the

parameters that can be varied when searching for better solutions. Chapter 4 describes details of

the implementation of the search, and the results obtained using this implementation are presented

in chapter 5. Finally, chapter 6 provides instructions for obtaining and running the search program

and a guide to the layout of the source code.
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Chapter 2

Williams’ program

Following Schönhage and Coppersmith-Winograd, we instead minimize a bound on ω/3, conven-

tionally labeled τ .

We choose P, the tensor power of the construction we are analyzing, and construct a constraint

program in bP2/3c+ P + 1 variables aIJK (the “small variables”), where I, J , and K are integers,

0 ≤ I ≤ J ≤ K, and I + J + K = 2P. (The STOC ’12 paper includes a more general form of the

program with two sets of variables, a and ā; in our analysis here we elect to set aIJK = āIJK .)

The program is then: minimize τ , subject to

• Nonnegative: aIJK ≥ 0 for all aIJK .

• Permutations identity : ∑
I,J,K

perm(I, J,K)aIJK = 1,

where perm(I, J,K) is the number of unique permutations of (I, J,K).

• Rank constraint (see section 2.1).

• Free variable constraints (see section 2.2).

Descriptions of the constraints follow.

2.1 Rank constraint

To compute a matrix product is to evaluate a particular trilinear form, a sum
∑
i,j,k tijkxiyjzk,

where t is the tensor of the trilinear form. Coppersmith and Winograd [CW87] defined the value

V (τ) of a trilinear form to indicate its similarity to a sum of matrix product tensors.

2



CHAPTER 2. WILLIAMS’ PROGRAM 3

The rank constraint is a generalization of Schönhage’s asymptotic sum inequality [Sch81]. It

relates the values VIJK(τ) of a set of trilinear forms that compose the tensor being analyzed to the

border rank r of the tensor.

Williams defines additional variables A` (the “large variables”) to be the sum of all aijk where

` ∈ {i, j, k}, times 2 if the other two indices are unique. (Equivalently, A` =
∑

(i,j,k) if `∈{i,j,k} aijk,

where here the sum is over all triples i, j, k that sum to 2P, not just those in sorted order, and

aijk = asort(i,j,k).) The rank constraint in its most general form is

rP ≤
∏
I,J,K VIJK

perm(I,J,K)aIJK∏
`A`

A`
.

In analyzing the P power of [CW87], we substitute Coppersmith and Winograd’s border rank,

r = q + 2, and take logs to get

P log(q + 2) ≤
∑
I,J,K

perm(I, J,K) log(VIJK)aIJK −
∑
`

A` log(A`).

The nonlinearity in this constraint is embedded in the second term, as each A` is a sum involving

small variables aijk.

2.2 Free variable constraints

When analyzing powers above the third, it is necessary to include a number of additional constraints.

These constraints take the form

aIJK
∏

I′,J′,K′

aI′J′K′
pI

′J′K′
IJK = 1. (2.1)

They are constructed by solving the linear system defining A` for some subset of aIJK (referred to

in the implementation as the “included” set) in terms of A` and the remaining aIJK (the “excluded”

set, S). The included set may be chosen arbitrarily, although its size is fixed by the rank of the

matrix dA`
daIJK

. (For the second and third powers, it is possible to solve for all aIJK in terms of

A`—i.e., the matrix has full rank—and as a result, no constraints are needed here.)

With the coefficients of the solved linear system in hand, we create one additional constraint

(2.1) for each variable aIJK in S. The coefficients of the solved linear system give the powers

pI
′J′K′

IJK =
daI′J′K′

daIJK
,

where each aI′J′K′ is “included” (not in S).
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Some of the derivatives pI
′J′K′

IJK may be negative. To allow for setting certain aIJK to zero when

searching for solutions, and to avoid numerical instability in solving the program, Williams rewrote

the constraints (2.1) in the form

aIJK
∏

I′,J′,K′

pI
′J′K′
IJK >0

aI′J′K′
pI

′J′K′
IJK =

∏
I′,J′,K′

pI
′J′K′
IJK <0

aI′J′K′
−pI

′J′K′
IJK .

This is the form we use in our implementation.

2.3 Computing values

In order to complete the constraint program, it is necessary to know a lower bound on the value VIJK

of each trilinear form that makes up the construction. Williams gives two algorithms for computing

the values. The first algorithm can only be used for even P, while the second can be applied to any

tensor power.

2.3.1 Even powers algorithm

Bounds on VIJK are computed recursively in terms of known bounds on the values for lower powers.

The structure of the resulting expression is a product of sums:

VIJK ≥ 2

(∑
`

ξ`

)1/3(∑
`

ψ`

)1/3(∑
`

ζ`

)1/3

︸ ︷︷ ︸
Combined products

· L∆︸︷︷︸
LP result

(2.2)

The expressions ξ`, ψ`, ζ`, and L∆ are computed using a set of temporary variables αijk indexed

by triples similar to the aijk variables of the constraint program. (Note that a different set of αijk

is constructed for each value VIJK .) The triples (i, j, k) in this step are subject to the constraints

that

• i+ j + k = 2P (as in the case of the value triples);

• i ≤ I/2, and if i = I/2, then j ≤ J/2—that is, (i, j, k) is not lexicographically greater than its

“complement” (I − i, J − j,K − k); and

• j ≤ J , k ≤ K—no index of the triple may be greater than the corresponding index of the

value’s triple.

(Unlike the aIJK above, these triples do not have to be in sorted order.)
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From these, define X` =
∑
i,j,k c(i, I, `)αijk, where

c(i, I, `) =


2 if i = ` = I − `;
1 if i = ` or i = I − ` (but not both);

0 otherwise.

Similarly, Y` =
∑
i,j,k c(j, J, `)αijk, and Z` =

∑
i,j,k c(k,K, `)αijk.

These definitions form a linear system. As before, we will solve the linear system for some of

the αijk in terms of X`, Y`, Z`, and an excluded set of αijk (∆). This yields a matrix of coefficients
dαijk
dX`

,
dαijk
dY`

,
dαijk
dZ`

, and
dαijk
dαi′j′k′

for each αi′j′k′ in ∆.

Once we have found these coefficients, we can compute ξ`, ψ`, and ζ`, the “combined products”

in the value lower bound. These are computed recursively from values of lower powers: define

Wijk = VijkVI−i,J−j,K−k. (The code calls Wijk “bases.” When evaluating VI−i,J−j,K−k, we can use

the fact that VIJK = Vsort(I,J,K).) Then

ξ` =
∏
i,j,k

Wijk
3
dαijk
dX` ` < bI/2c; ξbI/2c =

{
1 if I is odd

1/2 if I is even

ψ` =
∏
i,j,k

Wijk
3
dαijk
dY` ` < bJ/2c; ψbJ/2c =

{
1 if J is odd

1/2 if J is even

ζ` =
∏
i,j,k

Wijk
3
dαijk
dZ` ` < bK/2c; ζbK/2c =

1

2

∏
i,j,k

Wijk
6
dαijk
dZ` .

At this point, as in the linear system for the final program above, if the linear system was of full

rank (∆ = ∅), we are finished; the bound on the value is given by (2.2) (with L∆ = 1).

If not, we must compute L∆. Its value is

L∆ =
∏

αijk∈∆

δijk
αijk ,

where δijk have a form similar to that of ξ`, etc.:

δijk =
∏

i′,j′,k′

Wi′j′k′

dα
i′j′k′
dαijk .

Here, L∆ still contains some α variables, unlike the previous expressions. Our goal is to maximize

the bound on VIJK , so we should maximize L∆. We have some freedom to choose the values of

the variables αijk, with some constraints. These constraints, concisely, are that every αijk, whether

excluded (∈ ∆) or included, must be nonnegative. The included αijk are defined in terms of X`,

Y`, Z` and the excluded αijk by the solved linear system above. To make them depend only on the
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excluded variables, we give values to X`, Y`, and Z`:

X` =
ξ`∑
`′ ξ`′

Y` =
ψ`∑
`′ ψ`′

Z` =
ζ`∑
`′ ζ`′

Assuming we’ve computed the lower power values, X`, Y`, and Z` are then constants, making all

the constraints linear. Furthermore, δijk are also constants. Therefore, maximizing

log(L∆) =
∑

αijk∈∆

log(δijk)αijk

subject to these constraints is a linear program, which can be solved with any available LP solver.

(We employ GLPK for this purpose—see section 6.1.)

2.3.2 General powers algorithm

The algorithm for finding VIJK for arbitrary P differs from the even powers algorithm only in the

indices of the α variables, the computation of the bases W , and some multiplicative factors. The

most salient difference in the construction of the programs that i, j, k in αi,j,k, and ` in ξ`, etc., are

no longer integers but rather P-tuples of integers in {0, 1, 2}.
For 1 ≤ p ≤ P, define i[p] to be the pth element of the tuple i. The restrictions on the indices i,

j, and k for αi,j,k are:

•
∑
p i[p] = I;

∑
p j[p] = J ;

∑
p k[p] = K;

• for each p, i[p] + j[p] + k[p] = 2; and

• for each p < P, (i[p], j[p], k[p]) ≤ (i[p + 1], j[p + 1], k[p + 1]), where ≤ is a lexicographic

comparison of the tuples.

For example, one valid α for V123 (P = 3) is α(001),(020),(201).

The equations for the large variables X`, Y`, Z` use an extended definition of the perm function,

permP(i, j, k), which is the number of distinct triples of tuples (i′, j′, k′) one can obtain from all

possible permutations π of (1, 2, . . . ,P) by permuting i, j, and k each by π: i′[p] = i[π(p)], j′[p] =

j[π(p)], k′[p] = k[π(p)]. We use the following identity to avoid enumerating all possible π:

permP(i, j, k) = perm(i) · perm(j[p] : i[p] = 0) · perm(j[p] : i[p] = 1)
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The large variables are

X` =
1

perm(`)

∑
i,j,k

c(i, `) permP(i, j, k)αi,j,k

Y` =
1

perm(`)

∑
i,j,k

c(j, `) permP(i, j, k)αi,j,k

Z` =
1

perm(`)

∑
i,j,k

c(k, `) permP(i, j, k)αi,j,k

with c(i, `) = 1 if i is a permutation of ` and 0 otherwise. This linear system may be overconstrained,

so before solving it, we remove two of the equations to make sure its rank is equal to the number of

equations. (In our implementation, we choose the lexicographically greatest X` and lexicographically

greatest Y`; Williams’ paper removes the lexicographically least X and Y . The choice is arbitrary.)

Solving this system as above gives the derivatives
dαijk
dX`

,
dαijk
dY`

, and
dαijk
dZ`

. In the general powers

algorithm, each base Wijk is a product of P values: Wijk =
∏P
p=1 Vi[p],j[p],k[p]. Note that although

this appears to be a simple generalization of the product of two values that occurs in the even powers

algorithm, here i[p], j[p], k[p] are restricted to {0, 1, 2}, so the general powers algorithm is not fully

recursive, instead giving values for arbitrary powers only in terms of the values V002 and V011.

From the derivatives and bases, we construct

ξ` = perm(`)
∏
i,j,k

Wijk
3

permP (i,j,k)

perm(`)

dαijk
dX`

ψ` = perm(`)
∏
i,j,k

Wijk
3

permP (i,j,k)

perm(`)

dαijk
dY`

ζ` = perm(`)
∏
i,j,k

Wijk
3

permP (i,j,k)

perm(`)

dαijk
dZ`

and if ∆ is nonempty,

δijk =
∏

i′,j′,k′

Wi′j′k′
permP(i′,j′,k′)

dα
i′j′k′
dαijk .

In determining L∆, the setting of the large variables is also modified with perm(`) coefficients:

X` =
ξ`

perm(`)
∑
`′ ξ`′

Y` =
ψ`

perm(`)
∑
`′ ψ`′

Z` =
ζ`

perm(`)
∑
`′ ζ`′

We then use an LP solver to maximize log(L∆) and compute VIJK as in (2.2), identically to the

even powers algorithm.
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2.3.3 “Zero” values

Our implementation includes another lemma from Williams’ paper (“Claim 7”) which applies to

values V0JK from any power. These have a simpler lower bound that is a polynomial in q, raised to

the τ power:

V0JK ≥

 ∑
b≤J

b≡J (mod 2)

(
P

b, J−b2 , K−b2

)
qb


τ

.



Chapter 3

Parameters

While the nonlinear program itself represents a search over a family of algorithms, defined by the

aIJK variables that define the search space of the nonlinear constraint solver, there are five config-

urable parameters that can be changed to influence the construction of the program itself. A feasible

solution to the program generated for any setting of these parameters gives an upper bound on ω,

so it is necessary to experiment with the setting of these parameters to ensure that one has explored

the entire space of CW-like constructions.

3.1 Power

As described in chapter 2, Williams’ algorithm is applied by starting with an analysis of a base case

of a particular matrix multiplication construction and recursively generalizing the analysis to higher

tensor powers P. Varying this parameter has already been a productive source of improvements

in ω: successive generalizations to higher powers of two of the Coppersmith-Winograd [CW87]

construction by Stothers [Sto10] and Williams [Wil12] have each resulted in a better bound on ω.

We have applied our automated analysis to powers 2, 3, 4, 5, 7, and 8 of the CW construction,

although we were unable to find a feasible solution to the P = 7 program for any ω < 2.7.

3.2 q

The CW family of constructions, starting with [Str86], are assembled from a sum of some number

q of tensor products; Coppersmith and Winograd found ω < 2.376 for q = 6, but Williams achieved

ω < 2.3727 using an analysis with q = 5. We allow q to vary in our analysis between 4 and 7. Of

these, q = 5 appears to consistently give the best results across most powers (see chapter 5.1).

9
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3.3 Zero variables

It is possible to reduce the dimensionality of the search space for the nonlinear solver by requiring

that some number of the program parameters be exactly zero. This necessarily prevents the solver

from finding some optimal solutions, but if the variables to be set to zero are chosen carefully, this

restriction does not make solving the program much more difficult. If a feasible solution exists,

reducing the number of variables can increase the probability of finding it and makes the solver

converge faster (see section 5.2).

3.4 Free variables

Constructing the program involves several steps of solving underconstrained linear systems by choos-

ing a subset of the variables to treat as constants. There are two points in Williams’ algorithm where

this strategy is employed: constructing the linear programming piece of the values computation

(section 2.3), and constructing the derivatives constraint of the final program (section 2.2). Which

variables are treated as constants can affect the bounds obtained on the various tensor values VIJK .

Our implementation includes configurations of free variables used by Williams in [Wil12] and

the option to specify the free variables used for each value and for the final program; although our

search automation does not currently look for improvements gained in this way, this could be a

subject of future work. Since higher values loosen the rank constraint (due to the fact that VIJK is

nondecreasing in τ), to minimize ω one would need to search for the LP free variable setting that

maximizes each value. An exhaustive search would run in exponential time and may be infeasible

already for some of the 8th power values, but if a pattern could be uncovered in the optimal free

variable choices, this exhaustive search may be avoidable.

3.5 Substitution

Although the nonlinear program includes both equalities and inequalities, the equalities have simple

forms that allow them to be eliminated by substitution in closed form. We implemented a search op-

tion that allows such substitution; however, we found that NLopt, the nonlinear solver we employed

in searching for feasible solutions to the program, was unable to solve the programs constructed this

way in a reasonable amount of time. One likely cause of this is that the closed-form substitutions

introduce divisions in the constraints, which lead to discontinuities and precision problems in the

solver.



Chapter 4

Implementation

Because the “constants” δijk can contain ratios of lower-power values, which depend nonlinearly on

τ , constructing symbolic solutions for the values of higher powers, and therefore constructing the

complete nonlinear program such that τ can be minimized, is not tractable. Instead, our search

proceeds as a series of attempts to find a feasible solution for specific values of τ (and q). With τ

and q fixed, the values computed are numeric constants that do not have to be recomputed for every

evaluation in the nonlinear solver.

4.1 Parallelization

Since each attempt is independent and CPU-bound, it makes sense to run searches in parallel, up

to one search per available core. Our search implementation uses the Python multiprocessing

library to take advantage of multiple cores, employing a task queue abstraction to schedule searches

optimally. The structure of the search parallelization is (Python pseudocode):

def search():

create inter-process queues input_queue, output_queue

fill input_queue with num_cores random parameter settings

start num_cores worker processes running worker

while jobs completed < goal:

block until output_queue is not empty

extract a result from output_queue and record the result

add another random parameter setting to input_queue

kill worker processes

11
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def worker(input_queue, output_queue):

while True:

get a parameter setting from the input queue

attempt to solve the program with the parameters

place the result (which includes success/failure)

in output_queue

4.2 Improving performance

Solving the nonlinear program dominates the running time of the search. Two small optimizations

made dramatic differences in the efficiency of the solver.

The first optimization was to use the SymPy lambdify function to preprocess the symbolic

expressions manipulated by the procedures that constructed the nonlinear program into Python

functions that compute the expressions directly. The original SymPy expressions were runtime data

structures that required interpreting; lambdify transforms these into Python bytecode that runs

just as fast as a custom function written for each expression.

The second optimization was to replace the equality in Williams’ rank constraint with an in-

equality. Williams’ STOC ’12 paper had

rP =

∏
I,J,K VIJK(τ)

perm(I,J,K)aIJK∏
`A`

A`
.

However, suppose we have a setting of aIJK such that

rP ≤
∏
I,J,K VIJK(τ)

perm(I,J,K)aIJK∏
`A`

A`
.

Since each VIJK is a nondecreasing, continuous function of τ and all aIJK are positive, there exists

τ ′ ≤ τ for which the strict equality holds, so our τ still gives an upper bound on ω/3. It is therefore

acceptable to solve the program using the inequality, which is convenient because satisfying an

inequality typically requires far fewer iterations than approximating an equality to a high degree of

precision.

The Python program is still significantly slower than the C++ code written by Williams to solve

the 8th power program; much of this slowness is likely due to the overhead of calls into and out

of the NLopt Python wrappers. Possible future work in improving performance would involve the

generation of C or C++ code, which would eliminate this overhead.



Chapter 5

Results

The best exponent bound we obtained solely with our implementation was

ω ≤ 2.372771003742,

with P = 4, q = 5. We were also able to use parts of our implementation interactively to confirm a

solution found by Williams with her Maple and C++ code, which gives

ω ≤ 2.3727104061

for P = 8, q = 5. The settings for the variables aIJK that produced these bounds are included in

Table 5.2 on page 18.

5.1 Trends

Figure 5.1 plots the best matrix multiplication exponents obtained as a function of P and q. Powers

4 and 8 gave the best results of the data we collected; the results of the odd-powers attempts were

disappointing, giving exponents far higher than the even-power searches. (The fifth power is left out

of Figure 5.1 because including it obscures differences between the other powers; Figure 5.1 shows

the fifth power in comparison. We were unable to find a feasible solution for the seventh power.)

The success of the even powers algorithm suggests that the 16th power could be a fruitful next step

in the search.

For all powers except the fifth, q = 5 produced the best exponents. The best second- and third-

power exponents for q = 5 do not differ significantly from q = 6, but for the fourth and eighth

powers, the difference is notable.

The number of zero variables does impact the exponents found slightly, although it primarily

13
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Figure 5.1: Best exponents by power and q
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Figure 5.3: Best exponents for the 8th power, varying the number of zero variables

helps, achieving better exponents with higher numbers of variables set to zero. This is likely due

to the decrease in program complexity, requiring less searching in the global ISRES algorithm.

Figure 5.1 shows the best exponents found for each number of variables set to zero. All four

exponents shown in this figure were obtained with q = 5.

5.2 Performance

Figure 5.2 shows the number of calls to the constraint functions required to achieve convergence (or

determine that the program is not feasible) for the lower powers. Blue dots in the figure are successes,

while red are failures; the red line is the kN2 cap. While failed attempts are highly unpredictable

in the amount of time they take to admit failure, successes occur reliably below a certain number of

NLopt calls for each power. We take advantage of this by automatically aborting the optimization

upon seeing that it has taken an unreasonable number of calls. The heuristic we use is to stop after

kN2 calls, where N is the number of variables in the program (after removing the zero variables),

and k is a constant. We found that k = 20000 yields useful but conservative bounds.

Limiting the number of variables of the program decreases the time required for convergence

dramatically. Figure 5.2 shows three different configurations of zero variables for the 8th power; the

difference between using 6 zero variables and 16 is a factor-of-3 decrease in the number of iterations

until convergence for successes.



CHAPTER 5. RESULTS 16

2.365 2.370 2.375 2.380 2.385 2.390 2.395 2.400
ω

0

50000

100000

150000

200000

250000

300000

350000

NL
op

t c
al

ls

P=2, 0 zero vars (out of 4)

2.365 2.370 2.375 2.380 2.385 2.390 2.395 2.400
ω

0

200000

400000

600000

800000

1000000

NL
op

t c
al

ls

P=3, 0 zero vars (out of 7)

2.365 2.370 2.375 2.380 2.385 2.390 2.395 2.400
ω

0

500000

1000000

1500000

2000000

NL
op

t c
al

ls

P=4, 0 zero vars (out of 10)

2.40 2.45 2.50 2.55 2.60 2.65 2.70
ω

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

NL
op

t c
al

ls

P=5, 0 zero vars (out of 14)

Figure 5.4: Performance of the lower powers, as a function of ω
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Figure 5.5: Performance of 8th power, for each setting of zero variables
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Our result: P = 4,
ω ≤ 2.372771003742

q 5
τ 0.790923667914
a0,0,8 3.959562956941811× 10−8

a0,1,7 6.510583719407185× 10−5

a0,2,6 0.0006964997378042281
a0,3,5 0.012014754526837784
a0,4,4 0.0001025196963378948
a1,1,6 0.0006309742840397419
a1,2,5 0.0021449017957688166
a1,3,4 0.05540636001102574
a2,2,4 0.08675778797387862
a2,3,3 0.1051867695535445

Williams’ solution: P = 8,
ω ≤ 2.3727104061

q 5
τ 0.7909034687
a0,0,16 0
a0,1,15 0
a0,2,14 0
a0,3,13 0
a0,4,12 0
a0,5,11 5.607656585969684× 10−5

a0,6,10 0.0003442516415535713
a0,7,9 1.0000000000697815× 10−11

a0,8,8 1.000000000151792× 10−11

a1,1,14 0
a1,2,13 0
a1,3,12 0
a1,4,11 1.0000000000650404× 10−11

a1,5,10 0.00041278743729968476
a1,6,9 0.0006669991694253401
a1,7,8 0.0014957209858593493
a2,2,12 0
a2,3,11 1.0000000000434667× 10−11

a2,4,10 7.948735480255828× 10−12

a2,5,9 0.0021066945258983614
a2,6,8 0.006349235640076338
a2,7,7 0.009151018807902839
a3,3,10 9.999999987632591× 10−12

a3,4,9 0.0033285911678671305
a3,5,8 0.012854594323804942
a3,6,7 0.024900092793920667
a4,4,8 0.016144154713523113
a4,5,7 0.04007153148051885
a4,6,6 0.053855557825297065
a5,5,6 0.06900945039321159

Table 5.1: Variable settings for confirmed bounds
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Source code

Our Python source is available at http://stanford.edu/~wmonroe4/matrixmult/, downloadable

as a zipped archive or through a git repository.

6.1 Dependencies

A Python interpreter (http://python.org/) is needed to run the search program. Python 2.7 is

recommended to ensure that all the necessary libraries are supported. Our implementation uses

three third-party libraries, all of which are free and open-source.

SymPy (http://sympy.org/) is an algebra library for Python that is used to automate sym-

bolic calculations. It depends on NumPy (http://numpy.org/) for array types and numerical

algorithms.

PuLP (http://code.google.com/p/pulp-or/) is a linear programming modeler that is used

to represent the LP step of the values computation and submit it to an LP solver. The LP solver

we use is GLPK (http://www.gnu.org/software/glpk/).

NLOpt (http://ab-initio.mit.edu/nlopt) [Joh] is the library we use to solve the final non-

linear program. We employ primarily the ISRES [RY05] global search algorithm in our implementa-

tion; the interactive exploration feature also provides a hook for the COBYLA [Pow94] algorithm,

for finding local solutions.

Instructions for obtaining and installing these libraries are included on the site listed at the top

of the page.

6.2 Getting started

The code is broadly divided into the final program construction, the values computations, utility

classes and subroutines, and unit tests.
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The creation of the final program is accomplished with get final program in analysis.py.

Values are computed for the even powers algorithm and the general powers algorithm with the

functions named value in even.py and general.py, respectively.

Included in the code are an extensive set of unit tests comparing the output of various pieces of

the code with all expressions published in Williams’ STOC ’12 paper and included in personal cor-

respondence. These are placed in analysis test.py (for the final program), even test.py (for the

even powers value computation), and general test.py (for the general powers value computation).

To start the parallel search strategy in its default configuration (looking for solutions near the

best found so far, for powers 2, 3, 4, and 8, 4 ≤ q ≤ 7), run

matrixmult/src$ python search.py

The output is summarized in the console and logged in detail to exponents.txt.

The Python modules can also be used to interactively search for better exponents and verify

pieces of the algorithm. The module shortcuts is intended to make interactive exploration less

tedious; figure 6.2 gives a list of the useful functions and classes provided in this module and a

handful of other relevant definitions. As an example, the following lines verify that the solution

MAPLE P8, found by Williams using Maple, satisfies the rank constraint:

>>> from shortcuts import *

>>> gfp(Search(power=8, q=5, tau=MAPLE_P8[tau],

... free_vars=STOC12_P8_FREE,

... lp_free_vars=STOC12_P8_LP_FREE,

... zero_vars=STOC12_P8_ZERO)).subs(MAPLE_P8).positive

set([4.74077080125921e-10])

i.e.: get the final program for P = 8, q = 5 using the STOC ’12 free variables and zero variables,

plug in the Maple solution, and print the status of all inequality constraints (a set of numbers that

should be positive). The output is 4× 10−10 > 0, so the rank constraint is satisfied.
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Functions
Full name Shortcut
analysis.get final program(search) gfp

Construct the final program from the parameters given by
the Search object search. Return it as a Program object.

solutions.all output() all output

Return a list of all Solution objects stored in exponents.txt.
solutions.short vars(power) short vars

Return a dict mapping long variable symbols a i j k

to short variable symbols a, b, . . .
solutions.long vars(power) long vars

Return a dict mapping short variable symbols to long
variable symbols.

shortcuts.a(i, j, k) a

Return a SymPy Symbol suitable for use as an a variable
in the final program or an α in value computations.

common.value triples(power) vts

Return a list of all value triples (I, J,K) for the given power.
solvers.solve isres(program, ...)

Global solver: look for a Solution to program.
solvers.solve cobyla(program, starting point, ...) solve cobyla

Local solver: look for a Solution to program starting near
starting point.

even.value(triple, q, tau, ...)

general.value(triple, q, tau, ...)

Compute the VIJK from q and tau. Lower-power values can be
computed symbolically by passing the Symbols q and tau.

Constants
Full name Shortcut
symbols.q q

symbols.tau tau

The SymPy Symbols for q and τ .
solutions.STOC12 P2, STOC12 P4, STOC12 P8 STOC12 P2, ...

solutions.MAPLE P4, MAPLE P8 MAPLE P4, MAPLE P8

Solutions by Williams for several different powers, in the form
of dicts mapping a(i, j, k) symbols and tau to numbers.

solutions.STOC12 P4 FREE STOC12 P4 FREE

solutions.STOC12 P4 LP FREE STOC12 P4 LP FREE

solutions.STOC12 P8 FREE STOC12 P8 FREE

solutions.STOC12 P8 LP FREE STOC12 P8 LP FREE

Free variable settings for Williams’ STOC ’12 results (the same
settings are used for the MAPLE solutions).

solutions.STOC12 P8 ZERO STOC12 P8 ZERO

Zero variable settings for Williams’ STOC ’12 power 8 result.

Table 6.1: Useful definitions for interactive searching
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